• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

3D CAD World

Over 50,000 3D CAD Tips & Tutorials. 3D CAD News by applications and CAD industry news.

  • 3D CAD Package Tips
    • Alibre
    • Autodesk
    • Catia
    • Creo
    • Inventor
    • Onshape
    • Pro/Engineer
    • Siemens PLM
    • SolidWorks
    • SpaceClaim
  • CAD Hardware
  • CAD Industry News
    • Company News
      • Autodesk News
      • Catia News & Events
      • PTC News
      • Siemens PLM & Events
      • SolidWorks News & Events
      • SpaceClaim News
    • Rapid Prototyping
    • Simulation Software
  • Prototype Parts
  • User Forums
    • MCAD Central
    • 3D CAD Forums
    • Engineering Exchange
  • CAD Resources
    • 3D CAD Models
  • Videos

collieraerospace

HyperX CAE software sizes natural fiber-reinforced composite wind blade

May 6, 2022 By WTWH Editor Leave a Comment

In conjunction with the launch of its new HyperX structural analysis and design software here at JEC World 2022, Collier Aerospace Corp. is spotlighting the tool’s real-world application in sizing a 7.4-meter natural fiber composite wind turbine blade. The blade’s development was a collaboration between the Department of Naval Architecture and Ocean Engineering at Hongik University in South Korea and Samwon Millennia, Inc., a software reseller. Together, the aim was to evaluate the viability of replacing E-glass fiber with natural plant-based flax fiber reinforcement to reduce the environmental impact of end-of-life blades.

In addition to sizing, Collier Aerospace used HyperX software to define materials and ply layups and determine dimensions to help ensure the blade met all of the team’s performance requirements. The new software was used throughout the blade’s structural design stages, including laminate stacking sequences, ply boundaries and layup stacking order.

Collier Collier Aerospace Corporation’s new HyperX® structural analysis and design software was recently used in a real-world application to size a 7.4-meter natural fiber composite wind turbine blade. The blade’s development was a collaboration between the Department of Naval Architecture and Ocean Engineering at Hongik University in South Korea and Samwon Millennia, Inc., a software reseller. Together, the aim was to evaluate the viability of replacing E-glass fiber with natural plant-based flax fiber reinforcement to reduce the environmental impact of end-of-life blades.

“The impressive functionality of Collier Aerospace’s HyperX software made an incredible difference in the design and development of the natural fiber composite wind turbine blade,” said Professor Yeonseung (Y.S.) Lee of Hongik University. “Since the software optimizes all requirements at once rather than one at a time, it enabled our team to arrive at a workable solution quickly despite the lower mechanical properties of the natural materials. The expert assistance provided by Collier Aerospace helped our team identify a workable blade design that is largely reinforced with natural fibers.”

“Design requirements for this wind blade project included cost-effectiveness and reliability at a minimum weight to help maximize annual energy production,” said James Ainsworth, Director of Engineering for Collier Aerospace. “Our biggest challenge was meeting performance requirements with natural fiber composites, which do not provide as much stiffness and strength in epoxy resin as E-glass fibers. Using HyperX software, we provided design assistance in optimizing the flax fiber-reinforced composite blade to meet deflection limits to ensure tower clearance, determine spar cap location and the required thickness at each span-wise station, and reduce mass to lower fatigue loads and extend useful life.”

As a result of the wind turbine blades being difficult to recycle commercially, various groups are studying methods to dispose of end-of-life blades in a more environmentally benign manner than landfilling, or to recapture material for reuse in subsequent applications. Another approach, and the one taken in the Korean study, is to reduce the environmental impact at the start of the design process by opting to use natural fiber reinforcements rather than carbon or glass fibers. First, natural fibers are far less energy intensive to grow, harvest, and clean than the production of carbon or glass fibers. Second, since they are derived from living plants, natural fibers sequester carbon dioxide and nitrogen during their growing cycle and then keep those gases locked up in plant tissue during their use as a composite reinforcement.

The final blade design uses a hybrid of natural fiber and E-glass reinforcement. It is slightly heavier (7.4 percent) than the original glass fiber-reinforced blade, but that additional weight was deemed technically tolerable to gain the environmental benefits of using natural fibers. Currently, the wind blades are being produced using vacuum-assisted resin infusion molding.

Collier Aerospace 
www.collieraerospace.com

Filed Under: CAE Tagged With: collieraerospace

Collier Aerospace launches structural analysis and design optimization software

April 26, 2022 By WTWH Editor Leave a Comment

Collier Aerospace Corp. will announce at JEC World 2022, May 3-5 in Paris, France, the global debut of its new analysis and design optimization software for composite structures used in aircraft, space and automotive vehicles, and many other high-end applications. This computer-aided engineering (CAE) solution offers designers and engineers tools for balancing weight reduction with manufacturability, accelerating part development and helping to quickly achieve airframe certification by the Federal Aviation Administration (FAA) and European Union Aviation Safety Agency (EASA), where applicable.

To showcase the design optimization capabilities of this leading-edge software, Collier Aerospace will feature at its booth (K44 in Hall 6) two landmark projects: a novel composite racing sailboat and a natural fiber wind turbine blade.

“We totally redesigned our software,” said Craig Collier, co-founder, CEO and president, Collier Aerospace. “It runs faster and handles larger models with a new and powerful graphics engine and underlying relational database to hold terabytes of data. Along with streamlined workflows and a redesigned modern interface, engineers can do more in less time.”


The software, which is licensed on a subscription basis, will replace HyperSizer, the company’s previous product. Existing customers will be invited to migrate to the new software. Collier Aerospace will continue to support HyperSizer throughout a customer’s transition period to HyperX.

The technology was used to size a unique, carbon fiber composite racing sailboat that will attempt to break the world sailing speed record in 2023. A 1-meter scale model of the craft will be shown at the company’s booth. The other initiative evaluated the feasibility of replacing fiberglass with flax plant-based natural fiber reinforcement in wind turbine blades to reduce the environmental impact of the application during the design phase. The software was used to size the blade and define materials and ply layups.

Collier Aerospace Corporation
collieraerospace.com

Filed Under: CAE, News Tagged With: collieraerospace

Primary Sidebar

3D CAD NEWSLETTERS

MakePartsFast

Follow us on Twitter

Tweets by 3DCADWorld

Footer

3D CAD World logo

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Motion Control Tips
Linear Motion Tips
Bearing Tips

3D CAD WORLD

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
Follow us on Twitter Add us on Facebook Add us on LinkedIn Add us on Instagram Add us on YouTube

3D CAD World - Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy